
Abstract

In many practical applications in machine learning, computer vision, data

mining and information retrieval one is confronted with datasets whose intrin-

sic dimension is much smaller than the dimension of the ambient space. This

has given rise to the challenge of effectively learning multiple low-dimensional

subspaces from such data. Multi-subspace learning methods based on sparse

representation, such as sparse representation based classification (SRC) and

sparse subspace clustering (SSC) have become very popular due to their con-

ceptual simplicity and empirical success. However, there have been very lim-

ited theoretical explanations for the correctness of such approaches in the liter-

ature. Moreover, the applicability of existing algorithms to real world datasets

is limited due to their high computational and memory complexity, sensitivity

to data corruptions as well as sensitivity to imbalanced data distributions.

This thesis attempts to advance our theoretical understanding of sparse

representation based multi-subspace learning methods, as well as develop new

algorithms for handling large-scale, corrupted and imbalanced data. The first
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ABSTRACT

contribution of this thesis is a theoretical analysis of the correctness of such

methods. In our geometric and randomized analysis, we answer important

theoretical questions such as the effect of subspace arrangement, data distri-

bution, subspace dimension, data sampling density, and so on.

The second contribution of this thesis is the development of practical sub-

space clustering algorithms that are able to deal with large-scale, corrupted

and imbalanced datasets. To deal with large-scale data, we study different ap-

proaches based on active support and divide-and-conquer ideas, and show that

these approaches offer a good tradeoff between high accuracy and low running

time. To deal with corrupted data, we construct a Markov chain whose station-

ary distribution can be used to separate between inliers and outliers. Finally,

we propose an efficient exemplar selection and subspace clustering method that

outperforms traditional methods on imbalanced data.
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Chapter 1

Introduction

The significant increase in the ability to collect and store diverse informa-

tion in the past decades has led to an exceptional growth in the availability of

data. In the field of computer vision, for instance, portable and affordable digi-

tal cameras and smartphones interconnected with high-speed mobile networks

have produced image and video datasets of unprecedented scale, which are be-

ing collected by giant Internet companies such as Google and Amazon through

services they provide to billions of customers. The proliferation in dataset size

and complexity is accompanied by the challenge of successfully analyzing the

data to discover patterns of interest. Aside from being large-scale, modern

datasets very often possess significant amounts of corruptions in various forms

such as noise, corrupted entries, outliers and missing entries. All these fea-

tures pose stark challenges to the development of techniques for modern data
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